
Considering the DØ EDM

Issues and Solutions in the

DØ Event Data Model

Presented for the

ATLAS Architecture Meeting

13 August 1999

Marc Paterno
Fermilab / CD Special Assignments



Preface

I hope for more of a discussion session than a 
lecture.

I’ve included some material of an introductory 
nature for any audience members whose C++ 
expertise is limited. If I dwell on anything too 
elementary, please tell me to move on.

Look out for “buzzword alerts”, where (if asked) 
I’ll pause to describe buzzwords.

Some slides contain hyperlinks, useful if you’re 
viewing this on the web.



Outline

I shall present the general problems that the
DØ EDM attempts to solve:

�Some problems are inherent to handling event data
(e.g., keeping of “bookkeeping” information).

�Some problems are features of our choice of 
programming language. DØ is an almost purely C++ 
shop.

I shall also say where I think the DØ EDM (and 
some related systems) can be improved.

See also the newly updated EDM Tutorial, at
http://cdspecialproj.fnal.gov/d0/EDMTutorial/welcome.htm



What Does the Event Do?

Encapsulate all the data from one collision

�Must be a heterogeneous collection

�Provide uniform access to elements it contains

�Provide type-safe access to the elements it contains

�Control the lifetime of the elements it contains

Provide the mechanism through which software 
modules communicate

�Provide a way to minimize physical coupling between 
reconstruction algorithms

�Allow saving the state of reconstruction at any step



What Else Does the Event Do?

Provide “bookkeeping” information for all 
reconstruction output

�Provide support for assignment of identification tags

�Prevent users from modifying results already labeled

Also, the Event must work smoothly with the 
persistence mechanism and with the 
reconstruction, triggering, and analysis 
frameworks.



Heterogeneous Collection

C++ is a strongly typed language.

The collections provided by the C++ STL can 
contain only objects of the same type.

Possible solutions:

�Contain each type explicitly

�Every time we add a new type, we have to modify the Event 
class (the header file); every time we do this, we have to 
recompile all code that uses the Event (which includes the 
header). This is unmaintainable.

�Contain only pointers to a base class

�Everything stored in the Event inherits from this class.



Buzzword Alert!

object: An object is an instance of a class. Typically, each 
variable refers to some object (or, in C++, it could be a 
basic type like int or bool or double*).

class: A “class” may be though of as a data type. The 

description of a class includes what types of data each 
instance will contain, and what functions are defined for 
manipulating those data.

Example: the class string. Each instance of string (each 
string object) contains a sequence of chars; two 
instances can have different sequences. Each instance 
has available the same functions, e.g. size() returns how 
many chars are in the string.



Buzzword Alert!

strongly typed: This means that each variable has a 

type, function arguments have types, and function 
return values have types. The C++ compiler uses strong 
typing to (try to) prevent you from “fitting the wrong 
plug into the socket”. I’d call Fortran and Java strongly 
typed; I’d call Smalltalk, LISP and Python untyped 
(because any variable can be given any value).

inheritance: One of the four basics of the “OO 

paradigm”. Here, we mean that each of the classes that 
inherit from the “base” class have a relationship that is 
known to the compiler, and they share some common 
functions.



Buzzword Alert!

subclass (also derived class): A class that inherits 

from another class, which is called the superclass.

superclass (also base class): A class from which 

another class inherits.

The diagram at right
shows the standard
(UML) notation for
inheritance, and shows
a superclass having two
subclasses.

Superclass

Subclass1 Subclass2



Back to the Mixed Collection

To get a heterogeneous collection in C++:

�Our “event data” classes (DØ calls them collectively 
chunks) inherit from one base class (AbsChunk). The 
prefix “Abs” indicates this is an abstract class.

�The Event contains chunks by reference, not by value 
(the Event holds a pointer to a chunk, not the chunk 
itself).

The Event doesn’t need to know about all the 
classes it contains. The requirement of 
containment by reference will make issues of 
lifetime control more complex.



Buzzword Alert!

abstract class: A class of which one cannot make an 

instance. Abstract classes exist mostly to define 
interfaces.

interface: An interface class is an abstract class that 

contains only pure virtual functions (no data, no 
functions which are not pure virtual).

pure virtual function: A virtual function which is given 

no implementation; it must be implemented by a 
subclass.

virtual function: A function which the compiler knows 

can be overridden by the implementation in a subclass.



Uniform Access

What we mean here is that we want the “look and 
feel” of access for each type of event data to be 
as similar as possible, so that the system is 
easier to comprehend.

The only tradeoff here is that the access method 
must be of sufficient generality to meet all 
foreseeable needs.

The DØ EDM provides the required mechanism, 
but this mechanism imposes some demands on 
the “chunks” (event data objects).



Type-safe Access

We don’t want a user to get a bunch of muons 
when he requested a bunch of electrons.

�We’d like the compiler to prevent this, when possible.

�We’d like the run-time system to prevent this, if 
necessary.

�We never want such a mistake to quietly give an 
incorrect result.

This requirement is in tension against the concept 
of heterogeneous collections

�We want the Event to give us an instance of the right 
class, when it doesn’t know what it contains.



Templates to the rescue

To resolve this tension, the DØ EDM makes use of 
templates

�TKey<T>, AbsTSelector<T>, and THandle<T>.

�This allows us to have the EDM classes provide the 
“ugly” code, and to have other classes perform 
simpler tasks.

The use of templates was critical to making the 
system type-safe: the class TKey<T> has to 
know about the type T it will get from the 
event, even if the Event doesn’t know of it.



Buzzword Alert!

template: Templates are a mechanism by which we can 

write code once for a family of related functions or 
classes. Using templates, we can write a class template 
for the class list, which would provide the family of 
classes list<int>, list<AbsChunk*>, list<list<double> >, 
etc.



Drawbacks to templates

The use of templates has some drawbacks.

�Writing robust template code is somewhat trickier 
than writing “normal” code.

�Not all current compilers handle templated code well. 
Templates may add considerable complexity to your 
system for building software.

�Some popular HEP C++ products currently have 
trouble with templates.

Only the first of these is permanent. DØ decided 
the benefit was more important than the 
drawbacks.



Access to Chunks

Users “extract” items in the Event using keys, and 
are given read-only access through handles
� TKey<SVXChunk> svxkey(...); // arguments elided

THandle<SVXChunk> h = svxkey.find(event);

if (h.isValid()) h->svxChunkFunction();

�The key is responsible for knowing the data type it is 
to match (here, SVXChunk), and assuring that the 
returned object really is of this type.

Keys carry selectors, which are used to identify 
the specific instance(s) which the user wants.



There can be more than one instance of each 
class held by the Event!

�A JetChunk holds all the jets found by a single 
algorithm, with specific parameters.

�Several KT algorithms with different ycut values yield 
several JetChunk instances.

We need to identify specific instances, not just the 
class the user wants... leading to Selectors.

�Selectors inherit from either AbsSelector or 
AbsTSelector<T>.

�AbsSelector if they only need to use the AbsChunk interface: 
implement bool match(const AbsChunk& chunk).

�AbsTSelector<T> if they need to use functions specific to 
the class T: implement bool match(const T& chunk).



Buzzword Alert!

const type&: Used as the argument to a function, this is 

both an efficiency optimization (passing only an address, 
rather than a potentially large object) and a safety 
feature (the function receiving this argument cannot 
modify the object it is passed).



Widespread use of const

Const functions and variables are important in the 
DØ EDM because they allow us to have the 
compiler enforce the rule that a chunk, once 
entered into the Event, is no longer modifiable.

A dangerous scenario would be:

�tracks are found

�electrons refer to these tracks

�tracks are modified by refitting

�electrons now point to the wrong thing!

We prevent this by preventing step 3.



Memory Management

The Event owns all the chunks it contains.

�When the Event is deleted, all of its chunks must be 
deleted.

The safe and easy way is to have the Event 
contain chunks by value.

�Leads to unreasonable coupling (too much 
recompiling of the whole system).

�Inefficient, because all data must be copied from 
where it is made into the Event.

�Doesn’t work for heterogeneous collections.



Buzzword Alert!

delete: C++ provides dynamic memory allocation, but it it 

must be managed by the programmer (unlike Java and 
Smalltalk, which are “garbage collected”). When a 
dynamically allocated object is no longer wanted, it is 
destroyed (and the memory and other resource it uses 
are reclaimed) by deleting the object.

Failure to delete at the right time leads to memory 
leaks, and the crashing of programs. Deleting at the 
wrong time, or more than once, leads to memory 
corruption, and the crashing of programs.

One must be careful with memory management.



Doing it the Hard Way

The Event has to manage pointers to AbsChunks.

�All chunk designers must be very careful to ensure 
that the objects they make with dynamically allocated 
memory have ownership given to the Event at 
exactly the right time -- not before (would lead to 
double deletions) or too late (would lead to memory 
leaks).

�A standard technique is used to handle the process, 
but only code reviews can assure the standard 
technique is used. The compiler doesn’t help here.

A leak detecting tool (e.g. Purify) is essential!



Program = Many Modules

A reconstruction (or trigger or analysis) program is 
built from many independent modules.

�Necessary for maintainability: break the problem into 
pieces of manageable size.

It is important to minimize physical coupling
between these modules.

�Test modules in isolation.

�Release libraries of manageable size rather than 
monolithic body of code; shorten the release cycle.

�Ability to make system out of interchangeable 
components.



Buzzword Alert!

physical coupling: Physical coupling is the dependence 
of one component or package upon another, at either 
compile time or link time.

component: A single header (*.h, *.hh or *.hpp) + 

source file (*.cc or *.cpp) pair; often contains a single 
class.

package: A group of related components. In the DØ 

software build system, one package generally creates 
one library. The entire DØ library currently consists of 
>200 packages; new ones are being born at a rate of 
~20 per month.



Reco Process = Many Objects

A reconstruction (or trigger or analysis) program 
contains many “workers” (also called packages 
in the DØ framework jargon).

�Each worker does one task: finding tracks in the 
silicon, finding electromagnetic cluster in the 
calorimeter, identifying primary vertices, etc.

We want to minimize the physical coupling 
between these objects.

�They communicate with each other only through the 
Event.



Identifying What You Want

Framework package that does reconstruction = 
reconstructor. Reconstructors have to specify 
the input they want without knowing about the 
class that creates that input.

�EMID module requires a TrackChunk and a 
CalClusterChunk, but doesn’t know about the classes 
that create them.

Reconstructors specify what they want by type
(e.g. TKey<TrackChunk>) and by specifying 
what algorithm and parameters they want

�Parameters specified in compact form via RCPID.



Run Control Parameters

Each reconstructor may contain many parameters 
to be set at run-time:

�minimum chisquared for track fit, ...

�cone radius for jet finder, ...

These parameters are supplied at run time by an 
RCP object.

�RCP = collection of name/value pairs.

�Each RCP object is recorded in a database, which 
gives it a unique identifier (RCPID) based on the 
name/value pairs it contains.



RCPIDs

A reconstructor labels the chunks it makes with 
the RCPID that is assigned to the set of 
parameters used to configure that 
reconstructor.

Users can query the system at run time to get the 
parameters associated with any RCPID.

Selectors can use RCPIDs to identify the chunks 
they are to match.

Selectors can also use anything else the chunk 
designer decides is relevant.



Reconstructor Task Summary

Get data from Event

�Extract chunks using TKey<T> and appropriate 
selectors, often guided by RCPIDs.

Do reconstruction work (using algorithm objects).

�Create hits, tracks, muon candidates, or whatever is 
the task at hand.

Create output chunk(s)

�Put the created objects into the appropriate chunk, 
and label it with your RCPID.

Insert the chunk(s) into the Event



Save the State

The ability to save the state of reconstruction at 
any point can be very important

�Useful in verifying the correctness of the 
reconstruction system.

�Can assemble larger jobs out of smaller pieces.

Since reconstructors communicate only through 
the Event, saving the state at any time is made 
simple.



Bookkeeping

In order to trace the history of reconstruction

�Each chunk contains the appropriate RCPIDs.

�Each chunk is issued a ChunkID, unique within that 
Event -- assigned when the chunk is inserted into the 
Event.

�Each chunk contains the ChunkIDs of its “parents”.

Since no chunk can be altered after it is inserted 
into the Event, the genesis of each chunk is 
preserved automatically.



Bookkeeping & Flexibility

Because we keep track of the genesis of each 
chunk, we can have more than one instance of 
each class.

�Tracks from trf++ with parameter set A.

�Tracks from trf++ with parameter set B.

�Calorimeter cell transverse energies calculated with 
respect to vertex found by Algorithm A.

�Calorimeter cell transverse energies calculated with 
respect to vertex found by Algorithm B.

This flexibility is especially useful while studying 
new algorithms, and comparing to old.



Work Smoothly With Others

The EDM has to work smoothly with at least two 
other systems:

�Event processing framework.

�Persistency mechanism.

The DØ framework was written to know nothing 
about the Event; the Event knows nothing of 
the framework. They cannot interfere.

The persistency mechanism was designed to know 
nothing of the Event, so the Event has to know 
about persistency.



DØOM

The DØ persistency mechanism is called DØOM 
(the DØ object model).

It provides a preprocessor that generates the code 
required for reading and writing classes.

All classes that are capable of persistence have to 
live within its guidelines.

�These requirements are placed on the 
implementation of the classes, not just on their 
interfaces.

�The Event and all chunks must obey DØOM’s rules.



The Dirty Laundry

What are the weakest points? (In my opinion)

�Some rules are complex, and not enforced by the 
compiler. I’d prefer to have the compiler enforce all 
the rules.

�We make heavy use of templates. While this can give 
simultaneous efficiency and (type) safety, it makes 
for pain in the software building system.

�The EDM and DØOM were developed with too little 
collaboration. I’d prefer to see the persistency 
mechanism make use of the interfaces of the 
persistent classes, rather than relying on their 
implementations.


